295 research outputs found

    Polarization Requirements for Ensemble Implementations of Quantum Algorithms with a Single Bit Output

    Full text link
    We compare the failure probabilities of ensemble implementations of quantum algorithms which use pseudo-pure initial states, quantified by their polarization, to those of competing classical probabilistic algorithms. Specifically we consider a class algorithms which require only one bit to output the solution to problems. For large ensemble sizes, we present a general scheme to determine a critical polarization beneath which the quantum algorithm fails with greater probability than its classical competitor. We apply this to the Deutsch-Jozsa algorithm and show that the critical polarization is 86.6%.Comment: 11 pages, 3 figure

    Simulated Fire Behavior and Fine-Scale Forest Structure Following Conifer Removal in Aspen-Conifer Forests in the Lake Tahoe Basin, USA

    Get PDF
    Quaking aspen is found in western forests of the United States and is currently at risk of loss due to conifer competition at within-stand scales. Wildfires in these forests are impactful owing to conifer infilling during prolonged fire suppression post-Euro-American settlement. Here, restoration cuttings seek to impact wildfire behavior and aspen growing conditions. In this study, we explored how actual and hypothetical cuttings with a range of conifer removal intensity altered surface fuel and overstory structure at stand and fine scales. We then simulated wildfires, examining fire behavior and effects on post-fire forest structures around aspen trees. We found that conifer removal constrained by lower upper diameter limits (\u3c56 cm) had marginal effects on surface fuel and overstory structure, likely failing to enhance resource conditions sufficiently to sustain aspen. Increasing the diameter limit also led to a higher likelihood of fire spread and a higher rate of spread, owing to greater within-canopy wind speed, though crown fire activity decreased. Our simulations suggest heavier treatments could facilitate reintroduction of fire while also dampening the effects of wildfires on forest structure. Cutting specifications that relax diameter limits and remove a substantial portion of conifer overstory could better promote aspen restoration and mitigate fire hazard

    Drivers of understory plant communities in Sierra Nevada mixed conifer forests with pyrodiversity

    Get PDF
    Background: Fire suppression in western North America increased and homogenized overstory cover in conifer forests, which likely affected understory plant communities. We sought to characterize understory plant communities and their drivers using plot-based observations from two contemporary reference sites in the Sierra Nevada, USA. These sites had long-established natural fire programs, which have resulted in restored natural fire regimes. In this study, we investigated how pyrodiversity—the diversity of fire size, severity, season, and frequency—and other environment factors influenced species composition and cover of forest understory plant communities. Results: Understory plant communities were influenced by a combination of environmental, plot-scale recent fire history, and plot-neighborhood pyrodiversity within 50 m. Canopy cover was inversely proportional to understory plant cover, Simpson’s diversity, and evenness. Species richness was strongly influenced by the interaction of plot-based fire experience and plot-neighborhood pyrodiversity within 50 m. Conclusions: Pyrodiversity appears to contribute both directly and indirectly to diverse understory plant communities in Sierra Nevada mixed conifer forests. The indirect influence is mediated through variability in tree canopy cover, which is partially related to variation in fire severity, while direct influence is an interaction between local and neighborhood fire activity

    Salvage logging effects on regulating and supporting ecosystem services. A systematic map

    Get PDF
    Wildfires, insect outbreaks, and windstorms are increasingly common forest disturbances.Post-disturbance management often involves salvage logging, i.e. the felling and removal of the affected trees. However, this practice may represent an additional disturbance witheffects on ecosystem processes and services. We developed a systematic map to provide an overview of the primary studies on this topic, and created a database with information on the characteristics of the retrieved publications, including information on stands, disturbance, intervention, measured outcomes, and study design. Of 4341 retrieved publications, 90 were retained in the systematic map. These publications represented 49 studies, predominantly from North America and Europe. Salvage logging after wildfire was addressed more frequently than after insect outbreaks or windstorms. Most studies addressed logging after a single disturbance event, and replication of salvaged stands rarely exceeded 10. The most frequent response variables were tree regeneration, ground cover, and deadwood characteristics.Junta de AndalucĂ­aREMEDINA

    Fire, water, and biodiversity in the sierra nevada: A possible triple win

    Get PDF
    Reducing the risk of large, severe wildfires while also increasing the security of mountain water supplies and enhancing biodiversity are urgent priorities in western US forests. After a century of fire suppression, Yosemite and Sequoia-Kings Canyon National Parks located in California’s Sierra Nevada initiated programs to manage wildfires and these areas present a rare opportunity to study the effects of restored fire regimes. Forest cover decreased during the managed wildfire period and meadow and shrubland cover increased, especially in Yosemite’s Illilouette Creek basin that experienced a 20% reduction in forest area. These areas now support greater pyrodiversity and consequently greater landscape and species diversity. Soil moisture increased and drought-induced tree mortality decreased, especially in Illilouette where wildfires have been allowed to burn more freely resulting in a 30% increase in summer soil moisture. Modeling suggests that the ecohydrological co-benefits of restoring fire regimes are robust to the projected climatic warming. Support will be needed from the highest levels of government and the public to maintain existing programs and expand them to other forested areas

    Estimating Historical Forest Density From Land‐Survey Data: A Response to Baker and Williams (2018)

    Get PDF
    In the Western United States, historical forest conditions are used to inform land management and ecosystem restoration goals (North et al. 2009, Stephens et al. 2016). This interest is based on the premise that historical forests were resilient to ecological disturbances (Keane et al. 2018). Researchers throughout the United States have used the General Land Office (GLO) surveys of the late 19th and early 20th centuries to estimate historical forest conditions (Bourdo 1956, Schulte and Mladenoff 2001, Cogbill et al. 2002, Paciorek et al. 2016). These surveys were conducted throughout the United States and represent a systematic, historical sample of trees across a broad geographic area. A challenge of using GLO survey data is the accurate estimation of tree density from sparse witness tree data. Levine et al. (2017) tested the accuracy and precision of four plotless density estimators that can be applied to GLO survey sample data, including the Cottam (Cottam and Curtis 1956), Pollard (Pollard 1971), Morisita (Morisita 1957), and mean harmonic Voronoi density (MHVD; Williams and Baker 2011) estimators. The Cottam, Pollard, and Morisita are count‐based plotless density estimators (PDE) and have a history of being applied to GLO data (e.g., Kronenfeld and Wang 2007, Rhemtulla et al. 2009, Hanberry et al. 2012, Maxwell et al. 2014, Goring et al. 2016). The MHVD estimator is an area‐based PDE that has been applied by the study\u27s authors to sites in the western United States (Baker 2012, 2014), but had not been independently evaluated. Levine et al. (2017) found that the Morisita estimator was the least biased and most precise estimator for estimating density from GLO survey data, with a relative root mean square error ranging from 0.11 to 0.78 for the six study sites. Levine et al. (2017) also demonstrated the MHVD approach consistently overestimated density from 16% to 258% in all six study areas that were analyzed

    The clinical development candidate CCT245737 is an orally active CHK1 inhibitor with preclinical activity in RAS mutant NSCLC and E”-MYC driven B-cell lymphoma.

    Get PDF
    CCT245737 is the first orally active, clinical development candidate CHK1 inhibitor to be described. The IC50 was 1.4 nM against CHK1 enzyme and it exhibited>1,000-fold selectivity against CHK2 and CDK1. CCT245737 potently inhibited cellular CHK1 activity (IC50 30-220 nM) and enhanced gemcitabine and SN38 cytotoxicity in multiple human tumor cell lines and human tumor xenograft models. Mouse oral bioavailability was complete (100%) with extensive tumor exposure. Genotoxic-induced CHK1 activity (pS296 CHK1) and cell cycle arrest (pY15 CDK1) were inhibited both in vitro and in human tumor xenografts by CCT245737, causing increased DNA damage and apoptosis. Uniquely, we show CCT245737 enhanced gemcitabine antitumor activity to a greater degree than for higher doses of either agent alone, without increasing toxicity, indicating a true therapeutic advantage for this combination. Furthermore, development of a novel ELISA assay for pS296 CHK1 autophosphorylation, allowed the quantitative measurement of target inhibition in a RAS mutant human tumor xenograft of NSCLC at efficacious doses of CCT245737. Finally, CCT245737 also showed significant single-agent activity against a MYC-driven mouse model of B-cell lymphoma. In conclusion, CCT245737 is a new CHK1 inhibitor clinical development candidate scheduled for a first in man Phase I clinical trial, that will use the novel pS296 CHK1 ELISA to monitor target inhibition

    Tamm Review: Management of mixed-severity fire regime forests in Oregon, Washington, and Northern California

    Get PDF
    Increasingly, objectives for forests with moderate- or mixed-severity fire regimes are to restore successionally diverse landscapes that are resistant and resilient to current and future stressors. Maintaining native species and characteristic processes requires this successional diversity, but methods to achieve it are poorly explained in the literature. In the Inland Pacific US, large, old, early seral trees were a key historical feature of many young and old forest successional patches, especially where fires frequently occurred. Large, old trees are naturally fire-tolerant, but today are often threatened by dense understory cohorts that create fuel ladders that alter likely post-fire successional pathways. Reducing these understories can contribute to resistance by creating conditions where canopy trees will survive disturbances and climatic stressors; these survivors are important seed sources, soil protectors, and critical habitat elements. Historical timber harvesting has skewed tree size and age class distributions, created hard edges, and altered native patch sizes. Manipulating these altered forests to promote development of larger patches of older, larger, and more widely-spaced trees with diverse understories will increase landscape resistance to severe fires, and enhance wildlife habitat for underrepresented conditions. Closed-canopy, multi-layered patches that develop in hot, dry summer environments are vulnerable to droughts, and they increase landscape vulnerability to insect outbreaks and severe wildfires. These same patches provide habitat for species such as the northern spotted owl, which has benefited from increased habitat area. Regional and local planning will be critical for gauging risks, evaluating trade-offs, and restoring dynamics that can support these and other species. The goal will be to manage for heterogeneous landscapes that include variably-sized patches of (1) young, middle-aged, and old, closed canopy forests growing in upper montane, northerly aspect, and valley bottom settings, (2) a similar diversity of open-canopy, fire-tolerant patches growing on ridgetops, southerly aspects, and lower montane settings, and (3) significant montane chaparral and grassland areas. Tools to achieve this goal include managed wildfire, prescribed burning, and variable density thinning at small to large scales. Specifics on ‘‘how much and where?” will vary according to physiographic, topographic and historical templates, and regulatory requirements, and be determined by means of a socio-ecological process

    Tamm Review: Management of mixed-severity fire regime forests in Oregon, Washington, and Northern California

    Get PDF
    Increasingly, objectives for forests with moderate- or mixed-severity fire regimes are to restore successionally diverse landscapes that are resistant and resilient to current and future stressors. Maintaining native species and characteristic processes requires this successional diversity, but methods to achieve it are poorly explained in the literature. In the Inland Pacific US, large, old, early seral trees were a key historical feature of many young and old forest successional patches, especially where fires frequently occurred. Large, old trees are naturally fire-tolerant, but today are often threatened by dense understory cohorts that create fuel ladders that alter likely post-fire successional pathways. Reducing these understories can contribute to resistance by creating conditions where canopy trees will survive disturbances and climatic stressors; these survivors are important seed sources, soil protectors, and critical habitat elements. Historical timber harvesting has skewed tree size and age class distributions, created hard edges, and altered native patch sizes. Manipulating these altered forests to promote development of larger patches of older, larger, and more widely-spaced trees with diverse understories will increase landscape resistance to severe fires, and enhance wildlife habitat for underrepresented conditions. Closed-canopy, multi-layered patches that develop in hot, dry summer environments are vulnerable to droughts, and they increase landscape vulnerability to insect outbreaks and severe wildfires. These same patches provide habitat for species such as the northern spotted owl, which has benefited from increased habitat area. Regional and local planning will be critical for gauging risks, evaluating trade-offs, and restoring dynamics that can support these and other species. The goal will be to manage for heterogeneous landscapes that include variably-sized patches of (1) young, middle-aged, and old, closed canopy forests growing in upper montane, northerly aspect, and valley bottom settings, (2) a similar diversity of open-canopy, fire-tolerant patches growing on ridgetops, southerly aspects, and lower montane settings, and (3) significant montane chaparral and grassland areas. Tools to achieve this goal include managed wildfire, prescribed burning, and variable density thinning at small to large scales. Specifics on ‘‘how much and where?” will vary according to physiographic, topographic and historical templates, and regulatory requirements, and be determined by means of a socio-ecological process

    Mapping the planet’s critical natural assets

    Get PDF
    Sustaining the organisms, ecosystems and processes that underpin human wellbeing is necessary to achieve sustainable development. Here we define critical natural assets as the natural and semi-natural ecosystems that provide 90% of the total current magnitude of 14 types of nature’s contributions to people (NCP), and we map the global locations of these critical natural assets at 2 km resolution. Critical natural assets for maintaining local-scale NCP (12 of the 14 NCP) account for 30% of total global land area and 24% of national territorial waters, while 44% of land area is required to also maintain two global-scale NCP (carbon storage and moisture recycling). These areas overlap substantially with cultural diversity (areas containing 96% of global languages) and biodiversity (covering area requirements for 73% of birds and 66% of mammals). At least 87% of the world’s population live in the areas benefitting from critical natural assets for local-scale NCP, while only 16% live on the lands containing these assets. Many of the NCP mapped here are left out of international agreements focused on conserving species or mitigating climate change, yet this analysis shows that explicitly prioritizing critical natural assets and the NCP they provide could simultaneously advance development, climate and conservation goals.We thank all the participants of two working groups hosted by Conservation International and the Natural Capital Project for their insights and intellectual contributions. For further advice or assistance, we thank A. Adams, K. Brandon, K. Brauman, A. Cramer, G. Daily, J. Fisher, R. Gould, L. Mandle, J. Montgomery, A. Rodewald, D. Rossiter, E. Selig, A. Vogl and T. M. Wright. The two working groups that provided the foundation for this analysis were funded by support from the Marcus and Marianne Wallenberg Foundation to the Natural Capital Project (R.C.-K. and R.P.S.) and the Betty and Gordon Moore to Conservation International (R.A.N. and P.M.C.)
    • 

    corecore